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TABLE VII
SELF-CAPACITANCES FOR UNCOUPLED MICROSTRIP DIELECTRIC CON-

STANT OF 2.4

W/H CG/2

4.0 .6u7

3*W .55%

3.0 .940

2.5 .4477

2.0 .39X

1.6 .3436

1.2 .295L

1.0 .2’705

.8 .2446

.6 .2173

.4 .1s7’4

.2 .1514

microstrip filter does not have a spurious second harmonic

response, and it takes up less space at the expense of shorts

through the substrate. Microstrip filters are not viable by

themselves because they have poor ultimate rejection, high loss,

and do not follow the theoretical curves; but it is sometimes

convenient and economicalto use them.

V. CONCLUSION

In conclusion, a procedure is given which can be used to

design coupled line and interdigital structures on microstrip.

The procedure can be easily computer programmed using the

polynomial approximations to give accurate results with very

short computation times compared with times required by the

Bryant and Weiss method or even Smith’s approximations. Most

importantly, since this procedure leads from electrical parameters

to dimensions, it can be incorporated in automatic design

programs.
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Asymmetric Even-Mode Fringing Capacitance

HENRY J. RIBLET, FELLOW, ISEE

Abstract—An expression is given for the even-mode kringing capac-
itance of an infinite rectangular bar, asymmetrically located inside an
infinite u-shaped outer conductor.
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INTRODUCTION

The writer [1] has recently given a closed expression for the

odd-mode fringing capacitance for an infinite rectangular bar,

asymmetrically located in an infinite u-shaped outer conductor.

The essential problem solved in that note was the determination

of the conformal transformation which maps the upper half t

plane into the doubly infinite u-shaped polygon in the z plane

as shown in Fig. 1. The determination of the capacitance of the

structure presented no problem since it could be found from

well-known formulas with the help of the “excess capacitance”

introduced by Riblet [2].

If the even-mode capacitance is defined in a manner consistent

with that used by Getsinger [3], as the capacitance of the

structure in the z plane when the line segment BC is a magnetic

wall, then we require in the tplane the capacitance of two sep-

arated line segments, AB and CD, both at the same potential,

with respect to the infinite line segment DA. The determination

of the limiting value of this capacitance is the essential problem

of this short paper.

THE EVEN-MODE CAPACITANCE

In the tplane, the capacitance between the two-line segments,

[,u + C$A,1] and [l/k’, v – 6v] maintained at the same po-
tential, and the infinite line segment [v + dv, L – @] is required

in the limit as dy and h -+ O. It is important to keep in mind

that the small semicircles about A and D are magnetic walls,

while the semicircles about O, B, C, and E play no essential role

in the calculations. This capacitance is not altered if the upper

half of the t plane is mapped onto the upper half of thes plane

so that B maps into – 1, C into +1, A into – 1, and D into + [.

This is accomplished by the linear transformation

t–u
s.y —

t–b

if a, D, and y are selected so that

I/kz – a I–a=l

‘1/k2–/3=-y l-~

and

(1)

(2)

(3)

Again it is important that the semicircles about – 1and + 1and

the line segment between B and C be magnetic walls. From (2)

and (3)

2a/1 – (1 + l/k2)(a + ~) + 2/k2 = O
(4)

2a/? – (p + V)(a + p) + 2#v = o.

Whenever p + y # 1 + l/k2, this set of equations can be

solved uniquely for a~ and a + ~. It is then a simple matter to

solve the quadratic equation

to determine u and ~. Gamma is then found from either (2) or (3).

The total capacitance of the system is unchanged by the trans-

formation, and, if we take the radii of the semicircles about

A and D in the s plane to be the same, the geometry and the

lines of force in thes plane are completely symmetrical about the

imaginary axis. Thus it may be replaced by a magnetic wall.

Then one-half of the limiting value of the total capacitance of

the system is given by the limiting value of the capacitance of

the finite line segment, [1, 1 – c$s], with respect to the infinite
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Fig. 2. The r and s planes.

line segment, [1 + 6s, co], as 6s -0, keeping in mind that the

positive imaginary axis, the line segment, [0,1 ], and the small

semicircle about D are magnetic walls. The value olf this capac-

itance can be readily found by mapping the upper right-hand

quadrant of thes plane onto the upper half of the r plane (Fig. 2)

bymeans of thetransformation, r = S2. Here thepoints on the

negative real axis correspond to the points of the positive real

axis of the s plane. The problem is thus reduced to finding the

capacitance of theline segment, [1, 12 – dr],wit hrespecttothe

infinite line segment, [12 + dr, +co], intherplane in the limit

asib - 0. Here the line segment, [-co,l], and the small semi-

circle about D are magnetic walls.

Riblet [3] has shown how this capacitance, C,’, differs only

by an “excess capacity,” log (2)/H, from the capacitance ob-

tained by mapping the upper half of the r plane into the interior

ofarectangle. This latter capacitance isgivenby K'/Kfor K2 =

(b – a)(d – c)/(d – b)(c – a), wherea = -m, b = 1, c = 12 –

&, and d = 12 + br. Then k2 = 2&(12 – 1) if higher powers of

& are neglected. Finally,

K’ (12 - 1)
—%#og~=#og8-
K &

(5)

so that

c:= ~ - 10g‘2)— = ~ {log 4(12 – 1) – log &}.
KII

(6)
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Hence the total capacitance C= of the system in the s plane in

terms of the radii of the small semicircles in thes plane is

c= = ; {log [2(F – 1)/1] – log 6s} (7)

since Sr = 2s6s.

By definition, the even-mode fringing capacitance, CJ=”, is

given by the limiting value of C. – CPA – CP~, where CPA and

CP~ are the parallel-plate capacitances associated with the gaps

BI and B2 of Fig. 1. In [1], CfO” was defined as CO – CPA – CP~

and, since the formulas for the parallel-plate capacitances are

rather involved, it is convenient to express Cf ~“ in terms of Cf ~“.

Thus

c“=f= Cfo” -1- Ce – co. (8)

From [1, eq. (12)]

co = ~ {2 log (!J – X) – log (5L – log 6V}. (9)

Now 6,u and dv are obtained from & with the help of (l). After

differentiating, it is found that

and

~v = (v – /.?)’ as

y(rx – ~) “

Then from (7) and (9)

CO– Ce=#{log (l–k2sn2asn2d) –210g(ksnd)

(lo)

Fig. 1. Post-type oscillator and its equivalent circuit.

– log
2(P – 1) _ log (L - D)(V - /.0 . ~12)

1 y(a – ~) )

(11)

‘pfly”
This expression, together with [1, eq. (13)], in view of (8) gives

the desired formula for C~e”.
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An Analytical Comparison of Two Simple High-Q

Gunn Oscillators

IAN D. HIGGINS ANo ROBERT DAVIES

Mrsfract—This note compares and analyzes two commonly used
simple waveguide Gunn oscillators in terms of their loaded Q-factors.

Suitable design criteria are established for both, and two oscillators
which were tested conformed well to these. It is concluded that although
the more mechaaieally complex oscillator, which is in common use, has a

greater flexibility, the simpler oscillator is adequate for most applications.

I. INTRODUCTION

The Gunn diode is a simple two-terminal device which, when

mounted in a resonant circuit and biased with a suitable dc

potential, generates microwave power. The basic noise and sta-
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Fi~. 2. Iris-coupled oscillator.

bility properties of the device are modified by the loaded Q-factor

(QJ of the resonant circuit and for many applications a desirable

value of Q= is between 200 and 1000. Resonant circuits, or

cavities, for this purpose are usually made from simple wave-

guide and Figs. 1 and 2 show two common types. The purpose

of this short paper is to analyze the critical design aspects of

these cavities and to determine if either has any basic advantages.

The oscillator shown in Fig. 1 has been previously studied [1]

and there are many commercial samples of this type. It consists

simply of a post-mounted Gunn diode spaced a half wavelength

from a short circuit.

The. seeond oscillator, which is mechanically more complex,

consists of a Gunn post assembly mounted between a simple

inductive (i.e., circular hole) iris and a waveguide short circuit,

Fig. 2. There are also many oscillators of this design commercially

available and it is commonly supposed [2] to have advantages

over the more simple post-coupled oscillator.

Although the two oscillators appear simple in construction,

the analyses are complex. A numerical analysis of the post-

mounting structure was given by Eisenhart and Kahn [3] in

1971, and this analysis is used for final evaluation of both

oscillators. However, a more basic analytical approach is

adopted in this short paper in order to give a meaningful com-

parison of the two cavities. The simplified analysis is only

concerned with the circuit external to the post since complex

effects of the post are the same for both circuits. In this respect

it differs from the analysis of White [4] and leads to simple

expressions for the oscillators’ Q-factors. The interface reference

plane is at the waveguide/post junction YP representing the

admittance seen by the “Gunn-package-post.” The equivalent


