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TABLE VII
SELF-CAPACITANCES FOR UNCOUPLED MICROSTRIP DIELECTRIC CON-
STANT OF 2.4
W/H cG/2
540 6147
3450 +5596
3.0 «5040
2.5 477
2,0 3904
1.6 3436
1.2 #2954
1.0 2705
«8 2446
b 2173
ok <1874
o2 1514

microstrip filter does not have a spurious second harmonic
response, and it takes up less space at the expense of shorts
through the substrate. Microstrip filters are not viable by
themselves because they have poor ultimate rejection, high loss,
and do not follow the theoretical curves; but it is sometimes
convenient and economical to use them.

Y. CoNCLUSION

In conclusion, a procedure is given which can be used to
design coupled line and interdigital structures on microstrip.
The procedure can be easily computer programmed using the
polynomial approximations to give accurate results with very
short computation times compared with times required by the
Bryant and Weiss method or even Smith’s approximations. Most
importantly, since this procedure leads from electrical parameters
to dimensions, it can be incorporated in automatic design
programs.
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Asymmetric Even-Mode Fringing Capacitance
HENRY J. RIBLET, FELLOW, IEEE

Abstract—An expression is given for the even-mode fringing capac-
itance of an infinite rectangular bar, asymmetrically located inside an
infinite u-shaped outer conductor.
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INTRODUCTION

The writer [1] has recently given a closed expression for the
odd-mode fringing capacitance for an infinite rectangular bar,
asymmetrically located in an infinite u-shaped outer conductor.
The essential problem solved in that note was the determination
of the conformal transformation which maps the upper half ¢
plane into the doubly infinite u-shaped polygon in the z plane
as shown in Fig. 1. The determination of the capacitance of the
structure presented no problem since it could be found from
well-known formulas with the help of the “excess capacitance”
introduced by Riblet [2].

If the even-mode capacitance is defined in a manner consistent
with that used by Getsinger [3], as the capacitance of the
structure in the z plane when the line segment BC is a magnetic
wall, then we require in the ¢ plane the capacitance of two sep-
arated line segments, AB and CD, both at the same potential,
with respect to the infinite line segment DA. The determination
of the limiting value of this capacitance is the essential problem
of this short paper.

THE EVEN-MODE CAPACITANCE

In the ¢ plane, the capacitance between the two-line segments,
[z + 6p, 1] and [1/k%, v — 6v] maintained at the same po-
tential, and the infinite line segment [v + &v, 4 — du]is required
in the limit as du and év — 0. It is important to keep in mind
that the small semicircles about 4 and D are magnetic walls,
while the semicircles about O, B, C, and E play no essential role
in the calculations. This capacitance is not altered if the upper
half of the ¢ plane is mapped onto the upper half of the s plane
so that B maps into —1, Cinto +1, 4 into —/, and D into +1.
This is accomplished by the linear transformation

r— o
= 1
s yt_ﬁ )
if a, B, and y are selected so that
1k? — a 1-—a
yl/kz_ﬂ - )]
and
vV — a L— o
Y = -y =1l 3
v— B u—B .

Again it is important that the semicircles about —/ and +/ and
the line segment between B and C be magnetic walls. From (2)
and (3)

2af — (1 + k(@ + B) + 2/k>
208 — (u + v)(a + B) + 2uv

Whenever z + v # 1 + 1/k2, this set of equations can be
solved uniquely for «f and « + p. It is then a simple matter to
solve the quadratic equation

0

4
0. @

-+ Bx+af=0

to determine « and . Gamma is then found from either (2) or (3).
The total capacitance of the system is unchanged by the trans-
formation, and, if we take the radii of the semicircles about
A and D in the s plane to be the same, the geometry and the
lines of force in the s plane are completely symmetrical about the
imaginary axis. Thus it may be replaced by a magnetic wall.
Then one-half of the limiting value of the total capacitance of
the system is given by the limiting value of the capacitance of
the finite line segment, [1, / — ds], with respect to the infinite
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line segment, [I + s, o0}, as ds — 0, keeping in mind that the
positive imaginary axis, the line segment, [0,1], and the small
semicircle about D are magnetic walls, The value of this capac-
itance can be readily found by mapping the upper right-hand
quadrant of the s plane onto the upper half of the r plane (Fig. 2)
by means of the transformation, » = s2. Here the points on the
negative real axis correspond to the points of the positive real
axis of the s plane. The problem is thus reduced to finding the
capacitance of the line segment, [1, /2 — Jr ], with respect to the
infinite line segment, [I*> + &r, + 0], in the r plane in the limit
asér — 0. Here the line segment, [~ co0,1], and the small semi-
circle about D are magnetic walls.

Riblet [3] has shown how this capacitance, C,’, differs only

by an “excess capacity,” log (2)/T1, from the capacitance ob-
tained by mapping the upper half of the r plane into the interior
of a rectangle. This latter capacitance is given by K’/K for K? =
b — a)d — o)/(d — b)(c — a),wherea = —w,b=1,¢c=1?—
dr,and d = I?> + or. Then k* = 26r(I®> — 1) if higher powers of
Jr are neglected. Finally,

K 1., 16 1 -1
S x—log—==log8—"! 5
K o m et o ©)
so that
e, =K _108@ _ 140402 _ 1y —togsr)

K II II



412

Hence the total capacitance C, of the system in the s plane in
terms of the radii of the small semicircles in the s plane is

c = % {log [2(* — 1)/I] ~ log 55} ™

since or = 2sds.

By definition, the even-mode fringing capacitance, C’, is
given by the limiting value of C, — Cp, — Cp,, where Cp, and
Cp,, are the parallel-plate capacitances associated with the gaps
B, and B, of Fig. 1. In [1], Cy,” was definedas C, — Cp, — Cp,
and, since the formulas for the parallel-plate capacitances are
rather involved, it is convenient to express Cy,” in terms of Cy ”.
Thus

€= €4 6= G, ®
From [1, eq. (12)]
C, = l'l[ {2log (v — p) — log 6u — log ov}. ®

Now Jdu and Jv are obtained from Js with the help of (1). After
differentiating, it is found that

(u— By
oy = ~—2- 4 10
“ e — B) ’ 10
and
(v — p?
oy = ———>=—"- Js. 11
T oe-p” an
Then from (7) and (9)
C,—C, = % {log(1 — k®>sn® asn®d) — 2log (k sn d)
B 20 -1 u— P~ B
log ] log P— } . (12

This expression, together with [1, eq. (13)], in view of (8) gives
the desired formula for C,".
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An Analytical Comparison of Two Simple High-O
Gunn Oscillators

IAN D. HIGGINS anp ROBERT DAVIES

Abstract—This note compares and analyzes two commonly used
simple waveguide Gunn oscillators in terms of their loaded Q-factors.
Suitable design criteria are established for both, and two oscillators
which were tested conformed well to these. It is concluded that although
the more mechanically complex oscillator, which is in common use, has a
greater flexibility, the simpler oscillator is adequate for most applications.

I. INTRODUCTION

The Gunn diode is a simple two-terminal device which, when
mounted in a resonant circuit and biased with a suitable dc
potential, generates microwave power. The basic noise and sta-
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Fig. 1. Post-type oscillator and its equivalent circuit.

Fig. 2. Iris-coupled oscillator.

bility properties of the device are modified by the loaded Q-factor
(Qp) of the resonant circuit and for many applications a desirable
value of Q; is between 200 and 1000. Resonant circuits, or
cavities, for this purpose are usually made from simple wave-
guide and Figs. 1 and 2 show two common types. The purpose
of this short paper is to analyze the critical design aspects of
these cavities and to determine if either has any basic advantages.

The oscillator shown in Fig. 1 has been previously studied [1]
and there are many commercial samples of this type. It consists
simply of a post-mounted Gunn diode spaced a half wavelength
from a short circuit.

The. second oscillator, which is mechanically more complex,
consists of a Gunn post assembly mounted between a simple
inductive (i.e., circular hole) iris and a waveguide short circuit,
Fig. 2. There are also many oscillators of this design commercially
available and it is commonly supposed [2] to have advantages
over the more simple post-coupled oscillator.

Although the two oscillators appear simple in construction,
the analyses are complex. A numerical analysis of the post-
mounting structure was given by Eisenhart and Kahn [3] in
1971, and this analysis is used for final evaluation of both
oscillators. However, a more basic analytical approach is
adopted in this short paper in order to give a meaningful com-
parison of the two cavities. The simplified analysis is only
concerned with the circuit external to the post since complex
effects of the post are the same for both circuits. In this respect
it differs from the analysis of White [4] and leads to simple
expressions for the oscillators’ Q-factors. The interface reference
plane is at the waveguide/post junction Y, representing the
admittance seen by the “Gunn-package-post.” The equivalent



